Class: Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails
- Inherits:
-
Object
- Object
- Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails
- Defined in:
- lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb
Overview
Result of a risk analysis operation request.
Defined Under Namespace
Classes: CategoricalStatsResult, KAnonymityResult, KMapEstimationResult, LDiversityResult, NumericalStatsResult
Instance Attribute Summary collapse
- #categorical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult
- #k_anonymity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult
- #k_map_estimation_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult
- #l_diversity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult
- #numerical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::NumericalStatsResult
-
#requested_privacy_metric ⇒ Google::Privacy::Dlp::V2::PrivacyMetric
Privacy metric to compute.
-
#requested_source_table ⇒ Google::Privacy::Dlp::V2::BigQueryTable
Input dataset to compute metrics over.
Instance Attribute Details
#categorical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 726 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end end |
#k_anonymity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 726 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end end |
#k_map_estimation_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 726 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end end |
#l_diversity_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 726 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end end |
#numerical_stats_result ⇒ Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::NumericalStatsResult
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 726 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end end |
#requested_privacy_metric ⇒ Google::Privacy::Dlp::V2::PrivacyMetric
Returns Privacy metric to compute.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 726 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end end |
#requested_source_table ⇒ Google::Privacy::Dlp::V2::BigQueryTable
Returns Input dataset to compute metrics over.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
# File 'lib/google/cloud/dlp/v2/doc/google/privacy/dlp/v2/dlp.rb', line 726 class AnalyzeDataSourceRiskDetails # Result of the numerical stats computation. # @!attribute [rw] min_value # @return [Google::Privacy::Dlp::V2::Value] # Minimum value appearing in the column. # @!attribute [rw] max_value # @return [Google::Privacy::Dlp::V2::Value] # Maximum value appearing in the column. # @!attribute [rw] quantile_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # List of 99 values that partition the set of field values into 100 equal # sized buckets. class NumericalStatsResult; end # Result of the categorical stats computation. # @!attribute [rw] value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::CategoricalStatsResult::CategoricalStatsHistogramBucket>] # Histogram of value frequencies in the column. class CategoricalStatsResult # @!attribute [rw] value_frequency_lower_bound # @return [Integer] # Lower bound on the value frequency of the values in this bucket. # @!attribute [rw] value_frequency_upper_bound # @return [Integer] # Upper bound on the value frequency of the values in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of values in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Sample of value frequencies in this bucket. The total number of # values returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct values in this bucket. class CategoricalStatsHistogramBucket; end end # Result of the k-anonymity computation. # @!attribute [rw] equivalence_class_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityHistogramBucket>] # Histogram of k-anonymity equivalence classes. class KAnonymityResult # The set of columns' values that share the same ldiversity value # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Set of values defining the equivalence class. One value per # quasi-identifier column in the original KAnonymity metric message. # The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the equivalence class, for example number of rows with the # above set of values. class KAnonymityEquivalenceClass; end # @!attribute [rw] equivalence_class_size_lower_bound # @return [Integer] # Lower bound on the size of the equivalence classes in this bucket. # @!attribute [rw] equivalence_class_size_upper_bound # @return [Integer] # Upper bound on the size of the equivalence classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KAnonymityResult::KAnonymityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class KAnonymityHistogramBucket; end end # Result of the l-diversity computation. # @!attribute [rw] sensitive_value_frequency_histogram_buckets # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityHistogramBucket>] # Histogram of l-diversity equivalence class sensitive value frequencies. class LDiversityResult # The set of columns' values that share the same ldiversity value. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # Quasi-identifier values defining the k-anonymity equivalence # class. The order is always the same as the original request. # @!attribute [rw] equivalence_class_size # @return [Integer] # Size of the k-anonymity equivalence class. # @!attribute [rw] num_distinct_sensitive_values # @return [Integer] # Number of distinct sensitive values in this equivalence class. # @!attribute [rw] top_sensitive_values # @return [Array<Google::Privacy::Dlp::V2::ValueFrequency>] # Estimated frequencies of top sensitive values. class LDiversityEquivalenceClass; end # @!attribute [rw] sensitive_value_frequency_lower_bound # @return [Integer] # Lower bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] sensitive_value_frequency_upper_bound # @return [Integer] # Upper bound on the sensitive value frequencies of the equivalence # classes in this bucket. # @!attribute [rw] bucket_size # @return [Integer] # Total number of equivalence classes in this bucket. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::LDiversityResult::LDiversityEquivalenceClass>] # Sample of equivalence classes in this bucket. The total number of # classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct equivalence classes in this bucket. class LDiversityHistogramBucket; end end # Result of the reidentifiability analysis. Note that these results are an # estimation, not exact values. # @!attribute [rw] k_map_estimation_histogram # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationHistogramBucket>] # The intervals [min_anonymity, max_anonymity] do not overlap. If a value # doesn't correspond to any such interval, the associated frequency is # zero. For example, the following records: # {min_anonymity: 1, max_anonymity: 1, frequency: 17} # {min_anonymity: 2, max_anonymity: 3, frequency: 42} # {min_anonymity: 5, max_anonymity: 10, frequency: 99} # mean that there are no record with an estimated anonymity of 4, 5, or # larger than 10. class KMapEstimationResult # A tuple of values for the quasi-identifier columns. # @!attribute [rw] quasi_ids_values # @return [Array<Google::Privacy::Dlp::V2::Value>] # The quasi-identifier values. # @!attribute [rw] estimated_anonymity # @return [Integer] # The estimated anonymity for these quasi-identifier values. class KMapEstimationQuasiIdValues; end # A KMapEstimationHistogramBucket message with the following values: # min_anonymity: 3 # max_anonymity: 5 # frequency: 42 # means that there are 42 records whose quasi-identifier values correspond # to 3, 4 or 5 people in the overlying population. An important particular # case is when min_anonymity = max_anonymity = 1: the frequency field then # corresponds to the number of uniquely identifiable records. # @!attribute [rw] min_anonymity # @return [Integer] # Always positive. # @!attribute [rw] max_anonymity # @return [Integer] # Always greater than or equal to min_anonymity. # @!attribute [rw] bucket_size # @return [Integer] # Number of records within these anonymity bounds. # @!attribute [rw] bucket_values # @return [Array<Google::Privacy::Dlp::V2::AnalyzeDataSourceRiskDetails::KMapEstimationResult::KMapEstimationQuasiIdValues>] # Sample of quasi-identifier tuple values in this bucket. The total # number of classes returned per bucket is capped at 20. # @!attribute [rw] bucket_value_count # @return [Integer] # Total number of distinct quasi-identifier tuple values in this bucket. class KMapEstimationHistogramBucket; end end end |